
pisot Documentation
Release

Robert Dougherty-Bliss

Sep 25, 2017

Table of Contents

1 Maple and Python Comparison 1
1.1 Detailed Comparison . 2

2 Modules 5
2.1 cfinite module . 5
2.2 pisot module . 6

3 Examples 9

4 Classes 11

5 Indices and tables 13

Python Module Index 15

i

ii

CHAPTER 1

Maple and Python Comparison

Doron Zeilberger’s original Pisot.txt was implemented in the computer algebra system Maple. Maple has a very robust
symbolic computation system, but its programming language is clunky. I have chosen to implement Pisot.txt in the
programming language Python to enhance its readability and show that Maple (and its ilk) are not the only languages
that can perform symbolic computation.

Python was designed to be a readable and general purpose language. Applications specific to mathematicians are
not very general purpose, so symbolic computation is not a native feature of Python. Fortunately the library SymPy
implements symbolic computation in Python and along with it most features found in Maple. By performing all of
the “behind the scenes” calculation with SymPy, we obtain both the readability of Python and the symbolic power
of Maple. As a short example of the differences between Maple and Python, we will compare two snippets from
Zeilberger’s Maple procedure Pis and the corresponding Python version. The procedure Pis computes the absolute
value of the second largest root of the characteristic equation for a C-finite recurrence. As a part of this procedure,
Zeilberger discards 1 if it is a root. If lu contains the roots, then the following Maple snippet accomplishes this task:

if member(1,lu) then
lu:=convert({op(lu)} minus {1},list):
if lu=[] then
RETURN(FAIL):

fi:
fi:

Perhaps this is an obvious design pattern to an experienced Maple programmer, but to my eyes, there is a cognitive
barrier between what we want to do (remove the root 1) and what is being done (convert a list to a set, perform set
subtraction, and then converting the result back to a list).

If roots is a dictionary of roots, then in Python the same task can be accomplished as:

if 1 in roots:
del roots[1]

if not roots:
return None

The Python version communicates the intent of the code more clearly and without as many technical details.

1

http://sites.math.rutgers.edu/~zeilberg/tokhniot/Pisot.txt
http://sites.math.rutgers.edu/~zeilberg/tokhniot/Pisot.txt

pisot Documentation, Release

Detailed Comparison

As an example of the differences between the two, let us compare the full implementations of Zeilberger’s Maple
procedure Pis. His procedure is as follows:

#Pis(C): Inputs a C-finite sequence and outputs the absolute value of the second-
→˓largest root
#It is a Pisot number if it is less than 1.
#Fis([[1,1],[1,1]]);
#Pis([[10,219,4796,105030],[22,-3,18,-11]]);
Pis:=proc(C) local x,lu,i,aluf,mu:
lu:=[solve(x^nops(C[2])-add(C[2][i]*x^(nops(C[2])-i),i=1..nops(C[2])))]:

if nops(lu)<>nops(C[1]) then
RETURN(FAIL):

fi:

if member(1,lu) then
lu:=convert({op(lu)} minus {1},list):
if lu=[] then
RETURN(FAIL):

fi:
fi:

aluf:=1:

for i from 2 to nops(lu) do
if abs(evalf(lu[i]))>abs(evalf(lu[aluf])) then
aluf:=i:

fi:
od:

mu:=evalf([op(1..aluf-1,lu),op(aluf+1..nops(lu),lu)]):

max(seq(abs(mu[i]),i=1..nops(mu))):

end:

Now, taking our implementation of cfinite.CFinite for granted, the Python implementation is as follows:

def pisot_root(c_seq):
"""
Compute the absolute value of the second-largest root of the characteristic
equation for the C-finite sequence.

:c_seq: :class:`.CFinite` instance.

:returns: Floating point evaluation of the absolute value of the root, or
None.

"""
roots = c_seq.characteristic_roots()
n_roots = len(roots.keys())

if n_roots != c_seq.degree:
return None

2 Chapter 1. Maple and Python Comparison

pisot Documentation, Release

if 1 in roots:
del roots[1]

if not roots:
return None

root_norms = [abs(root) for root in roots.keys()]
root_norms = [sympy.re(sympy.N(norm)) for norm in root_norms]

max_index = root_norms.index(max(root_norms))
del root_norms[max_index]

return max(root_norms)

The procedures are about the same length, accounting for blank lines and comments.

The first feature is the documentation. Both versions document their inputs and outputs, but the Python version is
written in a standard way that allows for automatic documentation generation. In fact, the documentation at pisot.
pisot_root() is automatically generated, as is every other piece of documentation on this site.

The next part computes the roots of the characteristic polynomial. Maple:

lu:=[solve(x^nops(C[2])-add(C[2][i]*x^(nops(C[2])-i),i=1..nops(C[2])))]:

Python (taking advantage of cfinite.CFinite.characteristic_roots()):

roots = c_seq.characteristic_roots()

Using Python’s classes, it is clear that the characteristic roots are a property of the C-finite sequence, and that these
roots are what we are computing.

Next, we look to see if there are any repeated roots. This is true if the number of distinct roots is less than the degree
of the sequence. Maple:

if nops(lu)<>nops(C[1]) then
RETURN(FAIL):

fi:

Python:

n_roots = len(roots.keys())

if n_roots != c_seq.degree:
return None

The Maple version counts the number of coefficients in the C-finite sequence and calls this the degree. The struc-
ture of the Maple C-finite sequences is [[coeffs], [initials]], so it counts the number of elements in the
first element of a nested list. The Python version, relying on the class cfinite.CFinite, simply asks for the
sequence’s degree. Again, Python’s classes allow us to embed information into an object, rather than relying on its
actual representation.

1.1. Detailed Comparison 3

pisot Documentation, Release

4 Chapter 1. Maple and Python Comparison

CHAPTER 2

Modules

cfinite module

This module is a translation of (parts of) Doron Zeilberger’s CFinite.txt from Maple to Python. It contains classes and
functions to do two things:

1. Work with linear recurrence relations with constant coefficients, called C-finite sequences or recurrences.

2. Guess possible C-finite recurrences a given list of terms might satisfy.

Code to do the second item already exists in sympy, but I thought it would be fun to write it again.

class cfinite.CFinite(initial, coeffs)
Bases: sympy.series.sequences.SeqBase

This class provides procedures for working with linear recurrence relations with constant coefficients, called
C-finite sequences.

We inhereit from sympy’s SeqBase class, though our use is not currently (2017-09-20) optimized for recur-
sion. (This goes for pisot.py as well.) SeqBase uses sympy’s @cacheit decorator, which we should try to
take advantage of for recurrences. (For example, after computing CFinite.coeff(100), CFinite.coeff(99) is not
cached.)

characteristic_poly(var=x)
Create the characteristic polynomial of the recurrence relation in var.

Var Symbol to use as the polynomial’s variable.

Returns Sympy expression.

characteristic_roots()
Compute the roots of the characteristic equation.

Returns List of roots returned by sympy.

default_assumptions = {‘commutative’: True}

gen()
Yield a generator of terms.

5

pisot Documentation, Release

To compute terms, we will need to keep track of the previous degree terms. We need to access all of them,
but also constantly delete the first term and add a new one. For simplicity, we currently use a list for this,
despite the O(n) deletion. It is possible to use cyclic lists for O(1) runtime in both, should we wish later.

get_terms(k)
Compute the first k terms as a list.

interval
Interval on which sequence is defined ((0, ∞)).

is_commutative = True

start
Start of sequence (0).

stop
End of sequence (∞).

cfinite.guess_cfinite_degree(terms, degree)
Try to guess a C-finite recurrence of the given degree that the terms might satisfy.

If the terms do satisfy a linear recurrence relation, then they satisfy a certain linear system, where the coefficients
of the recurrence are the unknowns, and the terms form the coefficient matrix. To try and guess what the
coefficients should be, we form the system and try to solve it. If it works out, then we have a guess. If it doesn’t
work out, then no possible C-finite recurrence can occur of the given degree.

Terms Terms of the sequence.

Degree Degree of the recurrence to check.

Returns A CFinite instance, or None.

cfinite.guess_cfinite_recurrence(terms, max_degree=None)
Guess a C-finite recurrence that the terms might satisfy, up to a maximum degree.

Sympy has something that does this more efficiently, but I wanted to write my own that gives prettier error
messages (see guess_cfinite_degree()).

Terms Terms of the sequence.

Max_degree Maximum degree to check.

Returns A CFinite instance if a guess is found, otherwise None.

pisot module

This module is a translation of (part of) Doron Zeilberger’s Pisot.txt from Maple to Python.

Pisot.txt is a Maple program that implements procedures to assist in the study of Pisot sequences. In particular, it can
guess (and prove!) whether or not a given Pisot sequence satisfies a linear recurrence relation with constant coefficients
(up to all degrees checked). To do this, it relies on the Maple program Cfinite.txt, also written by Zeilberger.

Due to its mathematical complexity, Pisot.txt can be difficult to read. This is exacerbated by the fact that Maple,
though useful in its domain, is not an elegant programming language. I hope that this Python implementation will
(eventually) provide a more accessible demonstration of the applications of symbollic computing.

class pisot.Pisot(x, y, r)
Bases: sympy.series.sequences.SeqBase

This class defines basic methods for dealing with Pisot sequences.

6 Chapter 2. Modules

pisot Documentation, Release

The Pisot sequence 𝐸𝑟(𝑥, 𝑦) is defined by

𝑎0 = 𝑥 (2.1)
𝑎1 = 𝑦(2.2)

𝑎𝑛 =

⌊︂
𝑎2𝑛−1

𝑎𝑛−2
+ 𝑟

⌋︂
,(2.3)

where 0 < 𝑥 < 𝑦 are integers, and 𝑟 is some constant.

default_assumptions = {‘commutative’: True}

find_cfinite_recurrence(n_terms)
Try to guess a C-finite recurrence of the given degree that the first n_terms terms might satisfy, using
sympy’s find_linear_recurrence() function.

N_terms Number of terms to check.

Returns A CFinite instance or None.

gen()
Yield a generator of terms.

get_terms(k)
Compute the first k terms as a list.

interval
Interval on which sequence is defined ((0, ∞)).

is_commutative = True

start
Start of sequence (0).

stop
End of sequence (∞).

pisot.pisot_root(c_seq)
Compute the absolute value of the second-largest root of the characteristic equation for the C-finite sequence,
excluding any possible “1”s. It is assumed that the single root case is handled before calling this.

Zeilberger does additional things in this method. If there are repeated roots, we return None.

Parameters c_seq – CFinite instance.

Returns Floating point evaluation of the absolute value of the root, or None.

pisot.pisot_to_cfinite(pisot, guess_length, check_length, verbose=False)
Check if the given Pisot sequence satisfies a linear recurrence relation with finite coefficients.

We “correct” (I have not yet tried the single root case) the behavior of Pisot.txt as follows:

Let p be the single coefficient. Then, the conjectured form is 𝑎𝑛 = 𝑝𝑎𝑛−1, or 𝑎𝑛 = 𝑝𝑛𝑥. Rewritten, the
conjecture is that 𝑎𝑛 = 𝑏𝑛, where 𝑏𝑛 = 𝑝𝑛𝑥 for some real p. This is true iff

𝑝𝑛𝑥 = 𝑓𝑙𝑜𝑜𝑟(𝑝𝑛𝑥+ 𝑟),

which holds iff 0 <= r < 1.

That is, if it looks like the sequence is a trivial geometric sequence, then it is as long as 0 <= r < 1.

More formally: If 𝑦/𝑥 = 𝑝, 𝑝𝑛𝑥 is an integer for all nonnegative integers n, and 0 <= r < 1, then 𝐸𝑟(𝑥, 𝑦) is
given by 𝑎𝑛 = 𝑝𝑛𝑥.

As an important special case, if 𝑥 divides 𝑦 and 0 <= r < 1, then this is true. We only handle this case.

2.2. pisot module 7

pisot Documentation, Release

Pisot Pisot sequence.

Guess_length Number of terms to use when guessing the recurrence. This should be somewhat
small. If the sequence fails to satisfy a linear recurrence at a large number, then this method will
spend a long time trying to look for one.

Check_length Number of terms of the sequence to check the conjectured linear recurrence for. This
should be a large number.

Returns A CFinite instance, or None.

Pisot sequences are a family of recursive sequences defined by

𝑎0 = 𝑥 (2.4)
𝑎1 = 𝑦(2.5)

𝑎𝑛 =

⌊︂
𝑎2𝑛−1

𝑎𝑛−2
+ 𝑟

⌋︂
,(2.6)

where 0 < 𝑥 < 𝑦 are integers and 𝑟 is some constant. These modules define procedures to work with Pisot sequences
and determine whether or not they satisfy linear recurrence relations with constant coefficients. This work is a transla-
tion of Doron Zeilberger’s Maple package Pisot.txt, based on this article by Zeilberger and Neil Sloane. It is my hope
that this Python implementation provides a more accessible example of the uses of symbolic computation in languages
more general than Maple.

To use the package, ensure that SymPy is installed, then clone the GitHub project (via git clone https://
github.com/rwbogl/pisot.git, or downloading a ZIP file from the page, etc.). On the terminal, navigate to
the directory that pisot.py and cfinite.py are in, then open a Python terminal. After this, import the pisot
module with import pisot or some variant. Then every function defined in pisot.py will be available as
pisot.func_name.

8 Chapter 2. Modules

http://sites.math.rutgers.edu/~zeilberg/tokhniot/Pisot.txt
https://arxiv.org/abs/1609.05570
http://www.sympy.org/en/index.html
https://github.com/rwbogl/pisot

CHAPTER 3

Examples

The highlight of the package is pisot_to_cfinite(). Given a Pisot instance, it tries to determine whether or
not it satisfies a linear recurrence relation with constant coefficients.

Example:

In [1]: import pisot

In [2]: from sympy import Rational

In [3]: p = pisot.Pisot(5, 17, Rational(1, 2))

In [4]: guess_terms = 10

In [5]: check_terms = 1000

In [6]: c = pisot.pisot_to_cfinite(p, guess_terms, check_terms)

In [7]: c
Out[7]: CFinite([5, 17], [4, -2])

In [8]: c.get_terms(10)
Out[8]: [5, 17, 58, 198, 676, 2308, 7880, 26904, 91856, 313616]

In [9]: p.get_terms(10)
Out[9]: [5, 17, 58, 198, 676, 2308, 7880, 26904, 91856, 313616]

Or, using the verbose flag:

In [10]: pisot.pisot_to_cfinite(p, guess_terms, check_terms, verbose=True)
The Pisot sequence E_{1/2}(5, 17), whose first few terms are

[5, 17, 58, 198, 676, 2308, 7880, 26904, 91856, 313616],
appears to satisfy the C-finite recurrence CFinite([5, 17], [4, -2]) whose first few
→˓terms are

[5, 17, 58, 198, 676, 2308, 7880, 26904, 91856, 313616],

9

pisot Documentation, Release

The absolute value of the second-largest root of the C-finite sequence is 0.
→˓585786437626905 <= 1.
Therefore our conjecture holds.
Out[10]: CFinite([5, 17], [4, -2])

In [11]: p = pisot.Pisot(8, 16, Rational(1, 2))

In [12]: pisot.pisot_to_cfinite(p, guess_terms, check_terms, verbose=True)
The Pisot sequence E_{1/2}(8, 16), whose first few terms are

[8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096],
appears to satisfy the C-finite recurrence CFinite([8], [2]) whose first few terms are

[8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096],

This C-finite sequence looks like a geometric sequence, so this is easier to check.
The conjecture holds if x divides y; the guessed ratio equals y / x; and r is in [0,
→˓1).

We already know that r satisfies this.
The conjectured geometric sequence has ratio 2.

The ratio is an integer and equals y / x, so our conjecture holds.
Out[12]: CFinite([8], [2])

10 Chapter 3. Examples

CHAPTER 4

Classes

We define the classes pisot.Pisot and cfinite.CFinite. These inherit from SeqBase, so they are fully-
fledged sequences that can be used in SymPy. The classes encapsulate some important operations and properties of
C-finite and Pisot sequences, namely:

• Computing lists of terms is done with Pisot.get_terms() and CFinite.get_terms().

• For CFinite sequences, the characteristic polynomial is computed with CFinite.
characteristic_poly(), and its roots with CFinite.characteristic_roots().

• Guessing a linear recurrence with constant coefficients can be done with Pisot.
find_cfinite_recurrence().

11

pisot Documentation, Release

12 Chapter 4. Classes

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

13

pisot Documentation, Release

14 Chapter 5. Indices and tables

Python Module Index

c
cfinite, 5

p
pisot, 6

15

pisot Documentation, Release

16 Python Module Index

Index

C
CFinite (class in cfinite), 5
cfinite (module), 5
characteristic_poly() (cfinite.CFinite method), 5
characteristic_roots() (cfinite.CFinite method), 5

D
default_assumptions (cfinite.CFinite attribute), 5
default_assumptions (pisot.Pisot attribute), 7

F
find_cfinite_recurrence() (pisot.Pisot method), 7

G
gen() (cfinite.CFinite method), 5
gen() (pisot.Pisot method), 7
get_terms() (cfinite.CFinite method), 6
get_terms() (pisot.Pisot method), 7
guess_cfinite_degree() (in module cfinite), 6
guess_cfinite_recurrence() (in module cfinite), 6

I
interval (cfinite.CFinite attribute), 6
interval (pisot.Pisot attribute), 7
is_commutative (cfinite.CFinite attribute), 6
is_commutative (pisot.Pisot attribute), 7

P
Pisot (class in pisot), 6
pisot (module), 6
pisot_root() (in module pisot), 7
pisot_to_cfinite() (in module pisot), 7

S
start (cfinite.CFinite attribute), 6
start (pisot.Pisot attribute), 7
stop (cfinite.CFinite attribute), 6
stop (pisot.Pisot attribute), 7

17

	Maple and Python Comparison
	Detailed Comparison

	Modules
	cfinite module
	pisot module

	Examples
	Classes
	Indices and tables
	Python Module Index

